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Invited talks

A graceful tale

Simona Bonvicini (University of Modena and Reggio Emilia, Italy)

simona.bonvicini@unimore.it

A graceful labeling of a graph G with e edges is an injection from the vertex set
of G to the set {0, 1, . . . , e} with the property that {|f(u) − f(v)| : uv ∈ E(G)} =
{1, . . . , e}. A graph G having a graceful labeling is also said a graceful graph. In
Rosa’s seminal paper [3] such a labelings are called β-valuations, the term ‘graceful’
was introduced by Golomb [1] .

Rosa introduced graceful labelings for tackling Ringel’s conjecture [2] according
to which the complete graph of order 2e+1 can be decomposed into 2e+1 subgraphs
that are all isomorphic to a given tree with e edges. Ringel’s conjecture is one of the
oldest and best known open conjectures on graph decompositions and has always
attracted attention.

In this talk we will report on classical and new results on graceful graphs. This
is a joint work with Andrea Vietri.

References

1. S. W. Golomb, How to number a graph, in Graph Theory and Computing,
R. C. Read, ed., Academic Press, New York (1972) 23-37.

2. G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc.
Symposium Smolenice 1963, Prague (1964) 162.

3. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs
(Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and
Dunod Paris (1967) 349-355.
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Blocking sets in finite projective geometries

Tamás Héger (Department of Computer Science and Information Theory;
Budapest University of Technology and Economics; and

Department of Computer Science, ELTE Eötvös Lóránd University, Budapest,
Hungary)

heger.tamas@ttk.elte.hu

The aim of this talk is to give a gentle introduction to the theory of blocking
sets in finite geometries. We will keep the focus on constructive issues, since there
are quite some open problems, old and new, where examples are missing. I do not
assume that most of the audience has a deep experience with finite geometries, thus
I will try to outline the details in a way that empowers every interested participant
to work on the problems introduced in the talk. We will need some background on
linear algebra, finite fields and polynomials.

A blocking set in a finite projective plane is a set of points B such that B intersects
every line of the plane in at least one point. (In hypergraph theory, such objects
are called transversals or vertex covers.) These objects have been subject of serious
studies since the middle of the last century. Clearly, if we add some points to a
blocking set, we again get a blocking set; thus we mostly focus on minimal blocking
sets (that is, blocking sets that do not contain a smaller blocking set). Furthermore,
we will concentrate on small (and minimal) examples. There are deep structural
results about minimal and small blocking sets and, also, there are several examples
of such objects.

Let us consider the following generalization: a t-fold blocking set is a set of points
which intersects every line in at least t points. Similarly as in the case of (1-fold)
blocking sets, deep structural results have been known about these since a while; a
main problem is that we do not know in general whether they exist or not, as there
are no constructions for them! I became quite fascinated (and somewhat frustrated)
when this fact became apparent to me. We will discuss some (partially) successfull
attempts to construct small 2-fold (a.k.a. double) blocking sets.

Note that a double blocking set B has the property that every line is spanned
by its intersection with B. If we generalize this to higher dimensional projective
geometries, we arrive at the notion of strong blocking sets : a point set B is a strong
blocking set in an N -dimensional projective space if every hyperplane is spanned
by its intersection with B. (It follows that B is an N -fold blocking set with respect
to hyperplanes.) In the past few years, strong blocking sets have been studied
intensively because of their connection with so-called minimal codes. We will discuss
constructions of (small) strong blocking sets.
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Graph decompositions

Alexey Pokrovskiy (University College London)

alja123@gmail.com

A graph G can be decomposed into H1, . . . , Ht if the edge set of G can be
partitioned into copies of H1, . . . , Ht. This talk will be about decomposing complete
graphs into trees (i.e. when G is complete and H1, . . . , Ht are trees). Here there has
been a lot of progress in recent years (such as the solution of a conjecture of Ringel
for large trees), and also a lot of things we still don’t know (such as a conjecture of
Gyárfás). The focus of this talk will not be about presenting any new results, but
rather surveying existing ones and presenting simplified proofs of some of them.
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Transversal Embedding

Katherine Staden (The Open University)

katherine.staden@open.ac.uk

A classical question in graph theory is to find sufficient conditions which guar-
antee that a graph G contains a given spanning subgraph H. A colourful variant of
this problem has graphs G1, . . . , Gs on the same vertex set, where s ≥ e(H) and we
think of each graph as having a different colour, and the goal is to find a transversal
(or rainbow) copy of H that contains at most one edge from each graph Gi.

This is a new area with a lot of recent progress as well as many open problems.
I hope to sketch the proofs of three results in this area, each of which takes a

different approach:

� A rainbow version of Mantel’s theorem by Aharoni, DeVos, de la Maza, Mon-
tejano and Šámal, which proves a best possible condition on the number of
edges required in graphs G1, G2, G3 to guarantee a rainbow triangle.

� A rainbow version of Dirac’s theorem by Joos and Kim, which proves a best
possible condition on the minimum degree required in n-vertex graphs G1, . . . , Gn

to guarantee a rainbow Hamilton cycle.

� A rainbow version of the Hajnal-Szemerédi theorem by Montgomery, Müyesser
and Pehova, which proves an asymptotically best possible condition on the
minimum degree required in rn-vertex graphs G1, . . . , G(r

2)n
to guarantee a

rainbow Kr-factor.

In some of these results, the sufficient condition on each of G1, . . . , Gs is the same
as that required in a single graph to guarantee a copy of H; in others it is stronger.

As mentioned, there are many open problems in this area and I will try to
highlight several of these. Time permitting, I will discuss some even more recent
work in this area, including joint work with Yangyang Cheng on regularity tools in
this setting.

References

1. R. Aharoni, M. DeVos, S.G.H. de la Maza, A. Montejano and R. Šámal, A
rainbow version of Mantel’s theorem, Advances in Combinatorics (2020).

2. F. Joos and J. Kim, On a rainbow version of Dirac’s theorem, Bulletin of the
London Mathematical Society (2020).

3. R. Montgomery, A. Müyesser and Y. Pehova, Transversal factors and spanning
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4. Y. Cheng and K. Staden, Transversals via regularity, arXiv:2306.03595 (2023).
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Contributed talks

Universality for degenerate graphs

Peter Allen (LSE)

p.d.allen@lse.ac.uk

A graph G is said to be universal for a class H of graphs if for each H ∈ H, the
graph H is a subgraph (not necessarily induced) of G.

Two particularly interesting questions are: what is the threshold p such that the
random graph G(n, p) is universal for H, and what is the minimum e(G) over graphs
G which are universal for H? Both questions have been studied for H the class of
n-vertex graphs with maximum degree at most ∆. The latter extremal question is
quite well understood: there are explicit constructions due to Alon and coauthors
(in several papers) which give the correct order of magnitude O(n2−2/∆).

The former probabilistic question remains open; conjecturally, the answer is the
same as the appearance threshold for a K∆+1-factor in G(n, p), i.e. Θ̃(n−2/(∆+1))
(by the Johansson-Kahn-Vu theorem). In particular, the random graph is not an
optimal universal graph.

A natural question of Alon is what happens for H the class of n-vertex graphs
with degeneracy at most D. Here it is trivial to see that the random graph is not an
optimal universal graph. However, perhaps surprisingly, a close relative, a random
block model, turns out to be almost optimal. In this talk I will explain briefly why
the sparsest universal graph has Θ̃(n2−1/D) edges.

This is joint work with Julia Böttcher and Anita Liebenau.

Row-Hamiltonian Latin squares and perfect 1-factorisations

Jack Allsop (Monash University)

jack.allsop@monash.edu

A Latin square of order n is an n × n matrix of n symbols, such that each symbol
occurs exactly once in each row and column. Let L be a Latin square of order n.
Each pair of distinct rows of L forms a 2-line permutation. If this permutation is
a single n-cycle, for any choice of rows, then L is called row-Hamiltonian. Each
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Latin square has six conjugate Latin squares, obtained by uniformly permuting the
coordinates of its (row, column, symbol) triples. Let ν(L) denote the number of
conjugates of L which are row-Hamiltonian. It is known that ν(L) ∈ {0, 2, 4, 6} and
for each m ∈ {0, 2, 6} there are known infinite families of Latin squares with ν = m.
We construct the first known infinite family of Latin squares with ν = 4.

A 1-factorisation of a graph is a partition of its edge set into 1-factors. A 1-
factorisation is perfect if the union of edges in any pair of its 1-factors forms a
Hamiltonian cycle. A perfect 1-factorisation of the complete bipartite graph Kn,n

is equivalent to a row-Hamiltonian Latin square of order n. Our family of Latin
squares with ν = 4 allows us to build the eighth known infinite family of perfect
1-factorisations of complete bipartite graphs. This is joint work with Ian Wanless.

Effective bounds for induced size-Ramsey numbers

of cycles

Domagoj Bradač (ETH Zürich)

domagoj.bradac@math.ethz.ch

The induced size-Ramsey number r̂kind(H) of a graph H is the smallest number

of edges a (host) graph G can have such that for any k-coloring of its edges, there
exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in
their seminal paper, Haxell, Kohayakawa and  Luczak showed that for cycles, these
numbers are linear for any constant number of colours, i.e., r̂kind(Cn) ≤ Cn for some

C = C(k). The constant C comes from the use of the regularity lemma, and has a
tower type dependence on k. In this paper we significantly improve these bounds,
showing that r̂kind(Cn) ≤ O(k102)n when n is even, thus obtaining only a polynomial

dependence of C on k. We also prove r̂kind(Cn) ≤ eO(k log k)n for odd n, which almost

matches the lower bound of eΩ(k)n. Finally, we show that the ordinary (non-induced)
size-Ramsey number satisfies r̂k(Cn) = eO(k)n for odd n. This substantially improves
the best previous result of eO(k2)n, and is best possible, up to the implied constant
in the exponent. To achieve our results, we present a new host graph construction
which, roughly speaking, reduces our task to finding a cycle of approximate given
length in a graph with local sparsity.

Joint work with Nemanja Draganić and Benny Sudakov.

Large Pure Pairs in Edge-Coloured Graphs

Yangyang Cheng (University of Oxford)

Yangyang.Cheng@maths.ox.ac.uk
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Given a k-edge-coloured complete graph Kn, a pure pair (A,B) is a pair of disjoint
vertex sets such that the induced graph Kn[A,B] uses at most k − 1-colours. Note
that in 2-coloured case, a pure pair is a monochromatic complete bipartite subgraph.
A conjecture of Conlon, Fox and Sudakov asserts that for every 2-edge-coloured
complete graph H, there exists ε > 0 such that every 2-edge-coloured complete
graph Kn does not contain a subgraph isomorphic to H has a pure pair (A,B) with
|A| ≥ εnε and |B| ≥ εn.

In this talk, I will survey some progress to this conjecture as well as its connection
to the famous Erdös-Hajnal conjecture. I will also introduce a generalization of it
and some progress we made on it. Joint work with Peter Keevash.

Block avoiding sequencings of Steiner systems

Daniel Horsley (Monash University)

danhorsley@gmail.com

Abstract: A partial (n, k, t)-Steiner system is a pair (X,B) where X is an n-set of
vertices and B is a collection of k-subsets of X called blocks such that each t-set of
vertices is a subset of at most one block. An ℓ-block avoiding sequencing of such a
system is a labelling of its vertices with distinct elements of {0, . . . , n−1} such that
no block is contained in a set of ℓ vertices with consecutive labels. This talk will
discuss block avoiding point sequencings of partial Steiner systems. In particular,
we outline a proof that, for fixed k and t, any partial (n, k, t)-Steiner system has an
ℓ-good sequencing for some ℓ = Θ(n1/t) as n becomes large. This result is perhaps of
most interest in the case k = t+1 where results of Kostochka, Mubayi and Verstraëte
show that the value of ℓ cannot be increased beyond Θ((n log n)1/t). A special case
of this result shows that every partial Steiner triple system (partial (n, 3, 2)-Steiner
system) has an ℓ-block avoiding sequencing for each positive integer ℓ ≤ 0.0908n1/2.
This is joint work with Padraig Ó Catháin.

Rainbow spanning trees in uniformly coloured per-

turbed graphs

Kyriakos Katsamaktsis, joint work with Shoham Letzter and Amedeo Sgueglia
(University College London)

kyriakos.katsamaktsis.21@ucl.ac.uk

We consider the problem of finding a copy of a rainbow spanning bounded-degree
tree in the uniformly edge-coloured randomly perturbed graph. Let G0 be an n-
vertex graph with minimum degree at least δn, and let T be a tree on n vertices
with maximum degree at most d, where δ ∈ (0, 1) and d ≥ 2 are constants. We
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show that there exists C = C(δ, d) > 0 such that, with high probability, if the edges
of the union G0 ∪ G(n,C/n) are uniformly coloured with colours in [n − 1], then
there is a rainbow copy of T . Our result resolves in a strong form a conjecture of
Aigner-Horev, Hefetz and Lahiri[1].

References

1. E. Aigner-Horev, D. Hefetz and A. Lahiri, Rainbow trees in uniformly edge-
coloured graphs, Random Structures & Algorithms, 62(2):287–303, 2023.

Hypergraphs with minimum positive uniform Turán

density

Ander Lamaison (Masaryk University)

lamaison@fi.muni.cz

Reiher, Rödl and Schacht[1] showed that the uniform Turán density of every 3-
uniform hypergraph is either 0 or at least 1/27, and asked whether there exist 3-
uniform hypergraphs with uniform Turán density equal or arbitrarily close to 1/27.
We construct 3-uniform hypergraphs with uniform Turán density equal to 1/27.
Joint work with Frederik Garbe and Dan Král’.

References

1. C. Reiher, V. Rödl and M. Schacht, Hypergraphs with vanishing Turán density
in uniformly dense hypergraphs, Journal of the London Mathematical Society,
97(1):77–97, 2018.

Perfect hypergraph tilings

Richard Lang (Universität Hamburg)

richard.lang@uni-hamburg.de

In the perfect hypergraph tiling problem, we are given hypergraphs G and F . The
task then consists in covering the vertices of G with pairwise vertex-disjoint copies of
F . There are three essentially necessary conditions for the existence perfect tilings,
which correspond to barriers in space, divisibility and covering. It is natural to ask
for which classes of hypergraphs these conditions are also asymptotically sufficient.

In this talk, I discuss an approach to this question for hypergraph families that
are approximately closed under taking typical induced subgraphs of constant or-
der. Among others, this includes families parametrised by minimum degrees and
quasirandomness, which have been studied extensively in this setting.
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Computational construction of ovoids in projective

geometries

Filip Martinović (University of Zagreb)

filip.martinovic3@fer.hr

An arc in a finite projective plane of order q is defined to be a set of k points no
three of which are colinear. It is known [2] that for q odd k is at most q+1 and for q
even k is at most q+ 2. All (q+ 1)-arcs are called ovals, while (q+ 2)-arcs are called
hyperovals. In finite projective geometries of odd order all ovals have been classified
up to an isomorphism ([1], all such ovals are conics). For projective geometries of
even order that is not the case and so this problem is one of the central interesets
in finite projective geometries of even order.

In this talk we will survey our work with known hyperovals for projective geome-
tries of even order up to q = 128. Using these hyperovals it is possible to construct
all known ovals, which are then used to construct ovoids in projective space of the
same order. This is useful, for instance, because inversive planes of even order can
be constructed from the points of an ovoid [2].

There are 11 known infinite classes of hyperovals for projective planes of even or-
der and, in particular, for q = 128 this reduces to 8 known nonisomorphic hyperovals.
We will present our implementation based on parallel processing for computational
construction of examples of ovoids in PG(3, 128). The aim of this project is to give
us more insight on ovals of projective plane and ovoids of projective space of order
128.

References

1. B. Segre, Ovals in a finite projective plane, Canadian J. Math., 7:414–416,
1955.

2. P. Dembowski, Finite Geometries, Springer-Verlag Berlin Heidelberg, 1968.

Multistage Maker-Breaker games

Mirjana Mikalački (University of Novi Sad)

mirjana.mikalacki@dmi.uns.ac.rs

We initiate the study of a new variant of the Maker-Breaker positional game, which
we call multistage game. Given a hypergraph H = (X ,F) and a bias b ≥ 1, the
(1 : b) multistage Maker-Breaker game on H is played in several stages as follows.
Each stage is played as a usual (1 : b) Maker-Breaker game, until all the elements of
the board get claimed by one of the players, with the first stage being played on H.
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In every subsequent stage, the game is played on the board reduced to the elements
that Maker claimed in the previous stage, and with the winning sets reduced to
those fully contained in the new board. The game proceeds until no winning sets
remain, and the goal of Maker is to prolong the duration of the game for as many
stages as possible.

Here we estimate the maximum duration of the (1 : b) multistage Maker-Breaker
game, for biases b subpolynomial in n, for some standard graph games played on
the edge set of Kn: the connectivity game, the Hamilton cycle game, the non-k-
colorability game, the pancyclicity game and the H-game. While the first three
games exhibit a probabilistic intuition, it turns out that the last two games fail to
do so. We give more detail on that, and some open problems related to this topic.

This is joint work with Juri Barkey, Dennis Clemens, Fabian Hamann and
Amedeo Sgueglia.

Tranversals in quasirandom latin squares

Rudi Mrazović (University of Zagreb)

Rudi.Mrazovic@math.hr

A transversal in a n × n latin square is a set of n entries not repeating any row,
column, or symbol. A famous conjecture of Brualdi, Ryser, and Stein predicts
that every latin square has at least one transversal provided n is odd. We will
discuss an approach motivated by the circle method from the analytic number theory
which enables us to count transversals in latin squares which are quasirandom in an
appropriate sense.

Size-Ramsey numbers of structurally sparse graphs

Kalina Petrova (ETH Zürich)

kalina.petrova@inf.ethz.ch

The size-Ramsey number of a graph H is the minimum number of edges of a host
graph G such that any k-edge-colouring of G contains a monochromatic copy of
H. Research has mainly focused on the size-Ramsey numbers of n-vertex graphs
with constant maximum degree D. For example, graphs which also have constant
treewidth are known to have linear size-Ramsey numbers. On the other extreme, the
canonical examples of graphs of unbounded treewidth are the grid graphs, for which
the best known bound has only very recently been improved from O(n3/2) to O(n5/4)
by Conlon, Nenadov and Trujic. In this work, we prove a common generalization
of these results by establishing new bounds on the size-Ramsey numbers in terms
of treewidth (which may grow as a function of n). As a special case, this yields a
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bound of Õ(n3/2−1/(2D)) for proper minor-closed classes of graphs. In particular, this
bound applies to planar graphs, addressing a question of Wood. Our proof combines
methods from structural graph theory and classic Ramsey-theorertic embedding
techniques, taking advantage of the product structure exhibited by graphs with
bounded treewidth. This is joint work with Nemanja Draganic, Marc Kaufmann,
David Munha Correia, and Raphael Steiner.

Maker-Breaker games on random boards

Miloš Stojaković (University of Novi Sad)

milos.stojakovic@dmi.uns.ac.rs

In Maker-Breaker games played on edge sets of graphs, two players, Maker and
Breaker, alternately claim unclaimed edges of a given graph until all of its edges
are claimed. Maker wins the game if he claims all edges of one representative of a
prescribed graph-theoretic structure (e.g. a Hamiltonian cycle, or a fixed graph H).
Breaker wins otherwise.

We take a closer look at various Maker-Breaker games played on the edge sets
of random graphs, encountering some open problems along the way.
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Martinović Filip, 9
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